Exam 1, Mock 2

Disclaimer: UHScienceResource provides resources and services but is not responsible for, and expressly disclaims all liability for, damages of any kind arising out of use, reference to, or reliance on any information provided. While the information contained within the site is periodically updated, no guarantee is given that the information provided is correct, complete, and up-to-date. Moreover, UHScienceResource is not responsible for the accuracy or content of information contained in external sites provided by links.

Notice to User: Great effort has been used to make this document accurate and comprehensive but may still contain typos or other errors. If any errors are found, please email them to:

UHScienceResource@gmail.com

1. Give an acceptable IUPAC name for each of the compounds in a-b. Draw the structure of the compound in \mathbf{c}. Be sure to indicate the stereochemistry where appropriate. (12 points)

2. Place the compounds below in order of increasing boiling point. ($1=$ lowest, $3=$ highest boiling point) (6 pts.)

\square
3. Calculate the formal charge of the indicated atoms. (4 pts.)

4. Draw all structural isomers resulting from the monobromination of the compound shown below. You will be penalized for duplicate and incorrect structures. (9 points)

5. Consider the polarity of the compounds below. If the compound is polar, place \mathbf{P} in the answer box. If the compound is nonpolar, place \mathbf{N} in the answer box. (4 pts.)
a. $\mathrm{CH}_{2} \mathrm{Br}_{2}$ \square b. CO_{2} \square
6. Rank the indicated hydrogen atoms in order of increasing acidity. ($1=$ least acidic, $3=$ most acidic) (6 pts.)

7. Predict the products that would result from an acid/base reaction between the compounds below, and place the answers in the boxes provided. Indicate the direction of the equilibrium by placing an arrow in the box. (6 pts.)

8. For the structure given below, draw the important resonance contributors. Circle the major contributor. (12 pts.)

9. Consider the structure below and answer the following questions.

a. Write the hybridization of each atom indicated by an arrow in the box provided. (8 pts.)
b. What is the $\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{b}}-\mathrm{O}_{\mathrm{c}}$ bond angle? (2 pts.)
\square
c. The sigma bond between the atoms labeled a and b is formed by the overlap of what types of orbitals? Be specific (2 pts.)

10. Viewing the molecule along the C3-C4 bond, construct the Newman projection of the least stable conformation of 2,3,4,5-tetramethylhexane. (5 points)

Newman projection:
11. a. In the boxes below, draw the two chair conformations for cis-1-ethyl-2-methylcyclohexane and circle the more stable conformation. (8 points)

b. Using a few key words, explain your choice for the most stable conformation (2 points)
12. For the reactions below, provide curved arrows to indicate the electron flow associated with bond breaking and bond forming, i.e., provide the mechanisms. (6 points)
a.

13. An equation representing the halogenation of an alkane is shown below. a) Given the bond dissociation energies (BDE) below, calculate the overall ΔH° for the reaction in the box provided. You must show your work in the box below to receive credit. (6 points)

d. Are the products or reactants favored at equilibrium? (2 points)
\square

	Bond-D		$\begin{array}{r} \text { Bond-D } \\ E \end{array}$
Bond	kcal/mol	Band	kcal/mol
$\mathrm{H}-\mathrm{X}$ bonds and $\mathrm{X}-\mathrm{X}$ bonds		Bonds to secondary carbons	
$\mathrm{H}-\mathrm{H}$	104	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{H}$	95
D-D	106	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{F}$	106
$\mathrm{F}-\mathrm{F}$	38	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Cl}$	80
$\mathrm{Cl}-\mathrm{Cl}$	58	$(\mathrm{CH})_{2} \mathrm{CH}-\mathrm{Br}$	68
$\xrightarrow{\mathrm{Br}}-\mathrm{Br}$	46	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{I}$	53
I-I	36	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{OH}$	91
$\mathrm{H}-\mathrm{F}$	136	Bonds to tertisty cartons	
$\stackrel{\mathrm{H}-\mathrm{Cl}}{\mathrm{H}-\mathrm{Br}}$	103	Bonds to tectiany cartions (CH,, $\mathrm{C}-\mathrm{H}$	
$\xrightarrow{\mathrm{H}-\mathrm{Br}} \mathrm{H}$	88	$\begin{aligned} & \left(\mathrm{CH}_{4}\right)_{3} \mathrm{C}-\mathrm{H} \\ & \left(\mathrm{CH} \mathrm{H}_{3} \mathrm{C}\right. \end{aligned}$	$\begin{array}{r} 91 \\ 106 \end{array}$
$\xrightarrow{\mathrm{H}-\mathrm{I}} \mathrm{H}$	71	$\left(\mathrm{CH}_{9}\right)_{3} \mathrm{C}-\mathrm{F}$ $\left(\mathrm{CH}_{1}\right)_{3} \mathrm{C}-\mathrm{Cl}$	106
$\xrightarrow[\mathrm{HO}-\mathrm{H}]{\mathrm{HO}-\mathrm{OH}}$	119	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}-\mathrm{Cl}$	79
$\xrightarrow{\mathrm{HO}-\mathrm{OH}}$	51	$\left.\mathrm{C}_{\mathrm{CH}}^{3}\right)_{2} \mathrm{C}-\mathrm{Br}$	65
Methyl bonds $\mathrm{CH}_{3}-\mathrm{H}$		$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}$	91
$\mathrm{CH}_{3}-\mathrm{H}$ $\mathrm{CH}_{3}-\mathrm{F}$	104	Other $\mathrm{C}-\mathrm{H}$ bonds	
$\mathrm{CH}_{3}-\mathrm{F}$	109'	(benzylic)	
$\mathrm{CH}_{3}-\mathrm{Cl}$ $\mathrm{CH}_{3}-\mathrm{Br}$	84	$\begin{aligned} & \mathrm{PhCH}_{2}-\mathrm{H} \\ & \mathrm{CH}_{2}=\mathrm{CHCH}_{2}-\mathrm{H} \text { (benzylic) } \\ & \text { (allylic) } \end{aligned}$	85
$\mathrm{CH}_{3}-\mathrm{Br}$	70	$\begin{aligned} & \mathrm{CH}_{2}=\mathrm{CHCH}_{2}-\mathrm{H} \text { (allylic) } \\ & \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{H} \quad \text { (vinyl) } \end{aligned}$	87 108
$\mathrm{CH}_{3}-\mathrm{I}$ $\mathrm{CH}_{3}-\mathrm{OH}$	56	$\underset{\mathrm{Ph}-\mathrm{H}}{\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{H}} \quad$(vinyl) (aromatic)	108
$\mathrm{CH}_{3}-\mathrm{OH}$	91	(aromatic)	110
Bonds to primary carbons		$\mathrm{C}-\mathrm{CH}_{3}-\mathrm{CH}_{3}$	
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{H}$ $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{F}$	98	$\begin{aligned} & \mathrm{CH}_{3}-\mathrm{CH}_{3} \\ & \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{3} \end{aligned}$	
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{F}$ $\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Cl}$	107	$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{3}-\mathrm{CH}_{3} \mathrm{CH}_{3}$	85 82
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}$	81	$\underset{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{3}}{ }$	82
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br}$	68	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{3}$	84
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{I}$	53	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{3}$	81
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}$	91		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{H}$	98		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{F}$	107		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Cl}$	81		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}$	68		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{I}$	53		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$	91		

